
www.manaraa.com

Model Building and Model Checking
for Biochemical Processes

Marco Antoniotti1, Alberto Policriti2, Nadia Ugel1, Bud Mishra1,3

1 Courant Institute of Mathematical Sciences, NYU, U.S.A.
2 Università di Udine, ITALY

3 Cold Spring Harbor Laboratory, U.S.A.

Abstract

A central claim of computational systems biology is that, by drawing upon mathematical
approaches developed in the context of dynamical systems, kinetic analysis, computational
theory and logic, it is possible to create powerful simulation, analysis and reasoning tools for
working biologists to be used in deciphering existing data, devising new experiments and
ultimately, understanding functional properties of genomes, proteomes, cells, organs and
organisms.
In this paper we describe a novel computational tool that achieves many of the goals of this
new discipline. The novelty of this system involves an automaton-based semantics of the
temporal evolution of complex biochemical reactions starting from the representation given as a
set of differential equations. More importantly, the related tools also provide ability to
qualitatively reason about the systems using a propositional temporal logic that can express
ordered sequence of events succinctly and unambiguously. The implementation of our
mathematical and computational models in the Simpathica and XSSYS systems is described
briefly. Several example applications of these systems to cellular and biochemical processes
are presented: the two most prominent ones are Leibler et al.’s repressilator (an artificial
synthesized oscillatory network) and Curto-Voit-Sorribas-Cascante’s purine metabolism
reaction model.

Index Entries: Biochemical Reactions, Biological Models, Cellular Processes, Model Building,
Model Checking, Purine Metabolism, Repressilator and Temporal Logic.

1

http://U.S.A/

www.manaraa.com

1 Introduction
Recent advances in genomics have made it possible for the first time for a biologist to access
enormous amounts of information for a number of organisms, including human, mouse,
arabidopsis, fruit fly, yeast and E. coli. These developments are at the heart of the many
renewed ambitious attempts by biologists to understand the functional roles of a group of
genes using powerful computational models and high throughput microbiological protocols. The
emerging fields of system biology, and its sister field of bioinformatics, focuses on creating a
finely detailed and “mechanistic” picture of biology at the cellular level by combining the part-
lists (genes, regulatory sequences, other objects from an annotated genome, and known
metabolic pathways), with observations of transcriptional states of a cell (using micro-arrays)
and translational states of the cell (using proteomics tools). In the process, it has become
evident that the mathematical foundation of these systems needs to be explored accurately
and that their computational models be implemented in software packages faithfully while
exploiting the potential trade-offs among usability, accuracy, and scalability dealing with large
amounts of data.
Several biological and biochemical mechanisms can be modeled with relatively simple sets of
differential algebraic equations (DAE). The numerical solution to these differential equations
provides a potentially powerful and effective investigative tool for biologists and biochemists. In
this paper, we demonstrate the power of a novel computational tool with the ability to query
massive sets of numerical data obtained from in silico experiments on complex biological
systems. The computational tool derives its expressiveness, flexibility and power, by integrating
in a novel manner many commonly available tools from numerical analysis, symbolic
computation, temporal logic, model checking, and visualization.
In this paper we describe XS-systems: a new computational model extending the basic
foundations provided by the “S-systems models of biochemical processes.” The main
innovative extension provided by the XS-system involves an automaton-based semantics of the
temporal evolution of complex biochemical reactions starting from the representation as a set
of differential equations. The implementation of our mathematical and computational models in
the Simpathica and XSSYS systems will be described briefly (See Figures 1 and 2 for screen-
shots of the two systems). However, a detailed discussion of the underlying mathematical
foundations will be omitted, in order to keep the paper accessible to a wider readership. The
main emphasis of the paper will remain on biological applications illustrating how we envision
Simpathica and XSSYS to be used in practice. The work described in this paper is part of a
much larger project, still in progress and thus only provides a partial and evolving picture of a
new paradigm for computational biology.

2

www.manaraa.com

Figure 1. The Simpathica Main Window. The system being analyzed is the “repressilator”
circuit [2]. The upper left frame contains a list of the reactants. The upper right frame is used
to insert different kinds of reactions. The lower left frame contains a list of known reactions.
Finally the lower right frame contains a depiction of the reactions' network.

The rest of the paper is organized as follows: Section 2 describes our models of biological
experiments and how these models can be interpreted in terms of an automaton whose
structure is determined by both numerical and analytic solutions of a set of “parameterized”
differential equations. Section 2 also contains the description of a temporal logic language for
expressing and verifying properties of XS-systems together with a prototype implementation.
Section 3 contains the description of a simple system (the repressilator [2]) with a walk through
of Simpathica. Section 4 contains a more complex biological example and demonstrates how
the computational tools of this paper are applied. Section 5 concludes the paper.

2 Experiments and Simulation
Imagine a computational biologist about to perform simulations of complex biochemical
pathways in conjunction with related experimental data collection. The researcher will often
model the underlying biological and biochemical mechanisms with sets of relatively simple
differential algebraic equations (DAE), each one representing a reversible chemical reaction, a
degradation process, a synthesis process or a reaction modulated by an enzyme or a co-
enzyme. The numerical solutions to these differential equations and the time-series “tracing”

3

www.manaraa.com

the evolutions of an RNA transcript, protein or a lipid, etc. provide the basic ingredients for data
interpretation, data validation and hypothesis formation and falsification.
As the model complexity of the biological systems increases, the sets of numerical traces
become increasingly difficult to interpret and the traditional biological reasoning process fails to
scale beyond a handful of genes and relatively small and coarsely-modeled pathways. To cope
with this problem, we propose a novel approach that first summarizes the numerical traces into
an automaton with distinguishable biological states and a deterministic set of rules of transition
from state-to-state and finally, checks the automaton model for its ability to satisfy various
temporal logic statements.

Figure 2. The main XSSYS view. The core XSSYS interface is on the left. The left frame
contains a list of the “loaded” traces (obtained from simulators such as the Simpathica/Octave
engine or PLAS [4]). The right frame is used to type in various temporal logic queries and to
check the results. The right window is simply a plotting application (PtPlot from UC Berkeley),
which we use for visualization purposes.

Our starting reference point is the classical S-systems, described in [4,7], and the idea that a
natural completion for that approach would be an automaton summarizing the states along
which the simulated biochemical system evolves in time. The automaton, so generated, allows
the user to view, manipulate and reason about, using a well-integrated set of tools.
As an example (to be explored further), consider the case study of purine metabolism from
Chapter 10 of [4]. This case study, as many others, illustrates the fact that the “right” cellular

4

www.manaraa.com

behavior is often difficult to capture with an initial abstraction model. Often it is necessary to
improve the model in many successive iterations, each step involving a more accurate
estimation of some model parameters; identification and elimination of some “structural”
problems in the set of equations; or incorporation of some new unexpected insight obtained by
closer examination of an intermediate model. Our thesis is that rapid successive refinement of
a model is facilitated through the model checking algorithms and the underlying formalisms
provided by temporal logic formulae are capable of identifying the missing features in a
partial/incomplete model.

2.1 Mathematical Models, Differential Equations and
Canonical Forms

Biochemical reactions can be modeled with sets of differential equations. The classical
Michaelis-Menten's formulation of reaction speed is essentially differential equations for the
rate of change of the product of an enzymatic reaction. The parameters of such equation are
the constants Km (Michaelis-Menten Constant) and Vmax (maximum velocity of a reaction). An
S-system is simply a set of ordinary differential equations where each equation appears in a
particularly simple form and models the rate of change in the concentration of a product (or
substrate) in terms of its synthesis from and degradation into other reactants.
Canonical Forms. A set of differential equations can be rewritten (recast) in special canonical
forms by purely algebraic transformations and further inclusions of a set of algebraic constraint
equations. S-systems are sets of ODEs in canonical form. Canonical forms have several
advantages over more general forms of equations, since they can be more easily manipulated,
integrated and interpreted in mathematical terms.
The extended S-system model we use – XS-systems – has a simple canonical form. An XS-
system is simply a list of expressions describing the rate of change of a given quantity in a
model (say the concentration of a compound), plus a set of equations describing some
constraints on the relationships among some of the parameters characterizing the model.
These constraints may or may not be needed for the complete model to be meaningful. Their
presence depends on the system under exam. Each of the expressions describing a rate has a
very simple form as well: it is simply a difference between two algebraic power-products (or
monomials) one representing synthesis and the other, dissociation (i.e. it is a S-system). More
formally we have the following.
Definition 1 An XS-system is defined by a set of pairs of equations (a rate equation and a
constraint equation)

() ()
() () () 0 2

2
1

1
22

2
12

1
21

2
11

1

2121

=+++

−
nmjc

n
mjcmjc

mj
n2jc

n
jcjc

2j
n1jc

n
jcjc

1j

nih
n

2ih1ih
i

nig
n

2ig1ig
i

XXXaXXXaXXXa

XXXβXXXα=X

LLLL

LL&

with index variables, i ranging from 1 to n, and j, from 1 to k. This formalism describes an XS-
system with n equations and k constraints.
An XS-system can be interpreted as the representation of a set of flows of reactants within a
network of reactions [4] and thus describes how to translate a graphical rendition of such

5

www.manaraa.com

reaction networks into the classical S-System. Our XS-system formulation naturally captures
these steps in a computer-assisted translation, which had been traditionally carried out by a
manual manipulation; see [4].
The XS-system formulation makes one more distinction between dependent and independent
variables. Independent variables represent environmental conditions which influence the
behavior of the system but which do not influence themselves in return. Dependent variables
are all the others. Of course, to complete the description of the system it is necessary to specify
all the rate constants (α’s and β’s) and the kinetic orders (g's, h's, and c's) of each equation
and constraint.

2.1.1 Characterizing the behavior of the system across
different “states”

Although the dependent and independent variables of an S-system give a quantitative
description of the reactants (substrates, products, enzymes, etc.) involved in the experiment, a
tool for the qualitative analysis of the system is still missing. We have developed the theoretical
framework for such a tool and provided a first implementation in the XSSYS system.
We note that the data we can count on in the development of our tool are not only numerical
(i.e. the solution of the power-law differential equations defining the S-system) but also logical,
appearing in the form of constraints, known to the biologist modeling an experiment, and
relating values of the substances involved.
A simple and natural example of a logical property of many biological systems is the one
describing the existence of a steady-state. Informally, a system is in a “steady state” when
nothing “changes” in the system as time passes. More formally, for the purpose of our
discussion, the “steady state” is reached when all the first derivatives of the functions
describing dependent variables are equal to zero. The software tool can check this event by
solving an algebraic problem to detect the existence of a common root (this operation may be
rather involved, see [12]).
Very often the biologist not only knows that in the absence of external stimuli, such a state
must be reached sooner or later, but also knows what are (at least) the relative values of
substances involved in such a state. Another natural property involves boundedness of the
reactant concentrations involved in a biological process and may need to be ascertained as a
precondition to other interesting properties such as existence of a limit-cycle or steady-state
behavior.
The key to manipulate “qualitatively” these notions (e.g. the notion of steady-state) lies in
grouping each instant in time and the corresponding values of each variable into “states”. In the
simplest case we simply denote each instant in time (our sampled time) as associated to a
“state”. More interesting states (with deteriorating computational efficiency implications) are
constructed by grouping several time instants according to some simple rules, e.g. a
linearization rule that groups states, if their rates of change are within a user defined
parameter.

6

www.manaraa.com

Such construction yields an “automaton,” a common abstraction tool used in computer science
and other engineering disciplines. The automaton we construct allows us to capture qualitative
features of a biological system, e.g., the notion of a steady state. Note that the construction of
the automaton will eventually be hidden from the user. The automaton serves as a tool to
answer queries about the evolution of the system, and its construction is provided by the
software tool.

Definition 2 Given an S-system E, the S-system automaton AS describes a set of qualitative
states, S, of the system together with rules of state-transitions, ∆. More formally, an AS
associated with E is a 4-tuple AS = (S, ∆, S0, F), where S ⊆ D1 × · · · × Dn+m is a (finite or
infinite) set of states, ∆ ⊆ S × S is the transition relation, and S0, F ⊆ S are the initial and final
states, respectively.
The key idea is that the values of the dependent and independent variables uniquely
characterize the state of the system and that the collection of such values, together with a
relation governing the possible transitions, constitutes the automaton qualitatively describing
the behavior of the system.
The subsequent steps consist in providing the biologist with a language to impose constraints
on qualitative features of the system under study. To this end, we introduce a notion that
renders the temporal evolution of the system in terms of a trace:

Definition 3 A trace of an S-system automaton AE is a (finite or infinite) sequence s0, s1, . . . sn,
. . . such that s0 is an initial state (s0 ∈ S0) and there is a transition rule allowing the automaton
to enter si+1 from si, (∆(si, si+1) holds) for all i ≥ 0.
A trace can also be defined as:

trace(AE) = 〈〈X1(t) . . .Xn+m(t)〉 | t ∈ {t0 + k step : k ≥ 0}〉,
is called the trace of AE.

A trace of an S-system automaton is therefore a sequence of arrays of values that allows a
complete description of the dynamics of the reactants within a fixed time interval [t0, t]. The
precision of the description is parametric in the value of the step variable: the smaller the step
the higher the precision.
The following definition is used in order to “focus” the automaton on certain dependent values
determined by a fixed subset of variables --- these are the variables used explicitly or implicitly
in the description of a qualitative property or needed by the quantitative analysis.

Definition 4 Given any set of variables U ⊆ {X1, . . . ,Xn+m}, the sequence:

 trace(AE|U) = 〈〈Xi(t) | Xi ∈ U〉 : t ∈ {t0 + k step : k ≥0}〉,
is called the trace of U.
If U consists of a single variable Xi the trace is called the trace of Xi.

7

www.manaraa.com

Notice that a single trace of the automaton results when only one “set-up” (e.g., initial
conditions, a set of values for the parameters, a set of signaling events, etc.) for the system is
being considered. In order to allow more than one trace, it is necessary to consider different
“set-ups,” e.g., many possible values for the parameters, such as rate constants and kinetic
orders. If multiple traces are available, they can be combined within a single model containing
different possible evolutions of the system: a very common situation easily handled by any
branching time temporal logic, which allows a conceptual clock to split intermittently in order to
model simultaneous evolutions in many possible worlds. Of course, the question of how many
of these traces are necessary to assess the validity of the model is still open, we envision our
tools to be used in an iterative fashion, converging to a “good” model of the system under
investigation.
Regardless of whether one single trace or many of them are combined into a unique model, the
number of resulting qualitative states as defined above can be prohibitively large and may
ultimately be redundant for a qualitative analysis. In order to optimize the computational
efficiency of the quantitative analysis, we have implemented a collapse operation combining
those states that are indistinguishable as the numerical values characterizing them are same or
only differ by imperceptively small amount.
A distinctive feature of the collapsing operations is that they can be interleaved with the phase
performing the numerical computation of the approximate solutions of the power-law differential
equations. This feature guarantees that the collapse does not impose a heavy computational
burden on the entire system, during the process of producing a more genuine temporal logic
model (the automaton) for the S-system.
As a consequence, once this automaton has been constructed, it provides many different
avenues for:

a) Performing a qualitative analysis on the temporal evolution of the S-system, and
b) Studying in parallel (within a single structure) multiple evolutions and experiments
differing in rate constants and kinetic orders, e.g. wild-types and many mutants.

Note that the automaton proposed here are not necessarily unique and one may consider more
complex automata with different semantics and amenable to different logical analysis. For
instance, a timed automaton (with quantitative temporal information or with constraint labeling
the transitions) could be produced at no additional cost during the same numerical
computation. Currently, other variant automata are under active investigation and we anticipate
several more novel model automata to be incorporated into our final tool. In particular we are
investigating how to consider several traces at a time and how to build incrementally a Hybrid
Automata without loss of information: this will address the issues of exhaustivity which must be
considered with care in order to assess the overall validity of a model.

2.1.2 Temporal Logic (TL)
Temporal Logic (TL) [8,10] has been studied in depth in the context of systems whose behavior
change in time, for instance, computer hardware, network protocols and engineering systems.
We omit a detailed introduction to any or all of many specific Temporal Logics that have been

8

www.manaraa.com

introduced in the past. Instead we concentrate on the main ideas at the core of these logics in
order to provide the intuition about how it can be used in the analysis of biochemical systems.
Fundamental to a temporal logic is the notion that time-dependent terms from natural language,
such as “eventually” and “always,” can be given a precise meaning (semantics) in terms of the
abstract behavior of a system under discourse. As an example, consider the following
sentence:
 The concentration of guanosin triphosphate (GTP) is equal to x.
Such a sentence is true only in certain circumstances. Given a biological system in equilibrium
the above sentence may or may not be true at any or all instants of time. In particular, we can
easily construct sentences (in a suitable natural language) that express the fact that, given a
certain set of initial conditions the above sentence will eventually hold true. Temporal Logic
precisely formalizes the meaning of the adverb eventually (and other such “modes”: always,
infinitely often and almost always) and the resulting semantics lead to a precise model-
checking algorithm for determining the validity of TL sentences in the context of an automaton.
This particular attribute of TL is very important as it concisely captures the notion of a logical
property like “steady-state” and formalizes this notion in a simple consistent way that is directly
handled by the model-checking algorithm.
Consider a system M and a (simulation) trace trace(M). If we consider a state s in trace(M), we
can simply check if all the first derivatives in s are 0. Suppose we have a procedure that
answers yes (or no) when this is the case. Let us call this predicate, zero_derivative. Suppose
that there actually is a state s' in trace(M) where zero_derivative yields yes. Now, by the rules
of Temporal Logic the following statement would be true
 Eventually(zero_derivative)

for each instant from the start, at least up until the instant characterized as state s'.
Now we can expand the language of Temporal Logic and introduce a new predicate “steady
state” to be a synonym of the following concept: there exists an instant (a state s' in trace(M))
after which zero_derivative will always be true. More formally,
 steady_state(M)

is defined to be logically equivalent to the following:
 Eventually(Always(zero_derivative))

meaning that, when we consider the simulation (or in vivo) trace of the system there will be a
time where all the rates of change of the system's variables reach 0 and remain at that value.
Alternatively, we could be more selective and ask whether some specific variable reaches the
steady state. We can determine the answer as a result of the Definition 4.
 steady_state(M, GTP).

Another set of properties that we may want to express (and subsequently check) is the one
involving “persistence.” In other words, properties of the form: something is always true (or
false). For instance, we could ask whether in a given system
 Always (GTP > k).

9

www.manaraa.com

Thus, we query whether the GTP level always remains greater than k, independent of other
changes occurring during the evolution of the system.
How to translate a statement in English into Temporal Logic. The previous discussion
illustrates the main ideas needed to translate an English sentence involving temporal claims
into a query in temporal logic. The translation from English to TL is rather straightforward.
Simple conjunctions (“and”s), disjunctions (“or”s) and negations (“not”s) can be expressed
directly. The corresponding prepositional logic is then augmented with temporal modes:
“Always” and “Eventually.”
Now, suppose we wish to determine if (1) our system reaches a steady state and (2) the level
of GTP is less than k after a certain instant. This statement is simply expressed in TL as
 steady_state and Eventually(Always(GTP < k)). (a)
Note that the validity of the above statement is completely determined by the two constituent
sub-expressions. Furthermore, the truth property of the statement requires examining the entire
system trace, since steady_state is a “global” property, and the second conjunct has the same
form. To appreciate the subtleties of TL, consider the following expression: eventually the
system will be in steady state and the level of GTP will be less than k.
 Eventually(steady_state and Always(GTP < k)) (b)
Given the properties of TL, the above expression (if true) will actually guarantee that when the
system attains the steady state, it also has a GTP level less than k. This is a different statement
than (a), and it shows how flexible and yet precise a TL statement can be, without sacrificing a
high degree of expressive power. In [11] we discuss some of the mathematical and
computational problems associated with this approach, e.g. the dependency of the analysis on
the density of time points.

3 A Simple Example: the Repressilator
As a simple yet very interesting example, consider the repressilator system constructed by
Elowitz and Leibler [2]. First, the authors constructed a mathematical model of a network of
three interacting transcriptional regulators and produced a trace of the interaction using a
traditional mathematical package (MATLABtm). Subsequently they constructed a plasmid with
the three regulators and collected data from in vivo experiments in order to match them with the
predicted values.

10

www.manaraa.com

Figure 3 The simulation trace of the repressilator system.

The observed trace of the six combined variables is shown in Figure 3. The system exhibits an
oscillatory steady state.
Simpathica was used to enter the description of the repressillator system and to analyze its
behavior. Although this is a simple toy example for our application, it still presents a clear idea
regarding how a biologist may use the Simpathica system.

11

www.manaraa.com

Figure 4. Entering a reactant. The name for the quantity we want to use in the simulation (in
this case pLambdaCI) is entered in the text field along with the initial concentration (upper left
frame).
Figure 4 Shows how to use SIMPATHICA to enter a reactant (in this case pLambdaCI – the
protein LambdaCI). In Figure 5 a reaction is inserted in the system and the graphical depiction
is immediately visible in the bottom left frame; in this case the reaction just entered is a
modulated reaction: the production of TetR is inhibited by the amount of LambdaCI present.
Figure 6 shows how to enter a second reaction in the system.
Once all the reactions have been entered, along with a set of initial conditions, the menu
“Simulation->Run Simulation” will perform the following steps.

1.Generate the appropriate set of differential equations in canonical form. (Simpathica
strives to generate an S-System from a given network – if it cannot, it generates a GMA-
system).
2.Start the integrated Octave program (http://www.octave.org) to simulate the
system.

12

http://www.octave.org/

www.manaraa.com

Figure 5. Entering a reaction. A modulated reaction (production of TetR, inhibited by
LambdaCI) is entered in the system. The rate of the reaction is a = 1. The inhibition effect is
expressed by the exponent f = -1, assigning a label to the modulation arrow (the light one
originating from the pLacI field). Note the graphic rendition in the lower right frame. The
grayed oval represents the “input” of the reaction, while the dotted arrow represents the
modulation effect of pLacI.

Finally, we can use our system to verify that the repressilator system's variables actually
“oscillate.” We may formulate and test a query such as the one shown below (for variable
pLambdaCI):

Eventually[not Always(pLambdaCI < 0.25)
 or Always(pLambdaCI > 0.5)].

The above query states that the value of the `pLambdaCI' variable oscillates1 between the two
extremes of 0.25 and 0.5.
The repressilator example is interesting because it indicates how well our system scales when
many variables are present in the model. In a more recent work by Guet et al. [9], the authors
show how to construct plasmids containing many more kinds of promoters (e.g., five)
modulating these genes, thus potentially many more gene network topologies. Asking precise

1A more precise, yet more complex, query would be

Eventually[(pLambdaCI < 0.25)
 and Always[(plambdaCI < 0.25)
 implies Eventually[plambdaCI > 0.5]]
 and Always[(plambdaCI > 0.5)
 implies Eventually[plambdaCI < 0.25]]].

 This query seems to be common enough to warrant a "macro" like steady_state().

13

www.manaraa.com

and circumscribed queries about the behavior of such combinations is much more preferable to
visually examining complex graphical renditions of the complex interacting patterns of reactant
concentrations.

Figure 6. Entering a second reaction. In this case we enter a new simpler reaction. Note how
the new reaction is rendered in the bottom right frame and how it appears in the reactions list
in the bottom left frame.

4 A More Complex Example: Purine Metabolism
Let us now revisit in detail the example of purine metabolism described in [4] Chapter 10 and
fully analyzed in [5,6]. The pathway for purine metabolism is presented in Figure 7. A brief
description of the key reactions follows, and the reader is invited to examine the more detailed
summaries contained in [4,5,6] as well as the related literature referenced there.
The main metabolite in purine biosynthesis is 5-phosphoribosyl-α-1-pyrophosphate (PRPP). A
linear cascade of reactions converts PRPP into inosine monophosphate (IMP). IMP is the
central branch point of the purine metabolism pathway. IMP is transformed into AMP and GMP.
Guanosine, adenosine and their derivatives are recycled (unless used elsewhere) into
hypoxanthine (HX) and xanthine (XA). XA is finally oxidized into uric acid (UA). In addition to
these processes, there appear to be two “salvage” pathways that serve to maintain IMP level
and thus of adenosine and guanosine levels as well. In these pathways, adenine

14

www.manaraa.com

phosphoribosyltransferase (APRT) and hypoxanthine-guanine phosphoribosyltransferase
(HGPRT) combine with PRPP to form ribonucleotides.
The consequences of a malfunctioning purine metabolism pathway are severe and can lead to
death. The entire pathway is quite complex and contains several feedback loops, cross-
activations and reversible reactions, and thus an ideal candidate for reasoning with the
computational tools we have developed.

Figure 7.The metabolic scheme of purine metabolism in human. (Reprinted from [6], where a
full description and further references may be found.)

In [4], a sequence of models for purine metabolism is presented alongside an analysis of how
to identify discrepancies with physically observed data, and how to amend the current model in
order to explain these discrepancies.
We also show how to formulate queries over the simulation traces to express various desirable
properties (or absence of undesirable ones) that the model should possess. Should any of
these queries “fail”, the model will be marked for further examination, experimentation and
correction.

15

www.manaraa.com

4.1 Model 2
Given the purine metabolism model labeled as “model 2” in [4], and following the example
closely, we start by querying the simulation trace for the reachability of a steady state. This
property is easily formulated in our framework with the following query
 steady_state().

A precise definition of the predicate steady_state in terms of other atomic predicates has been
given earlier in the paper. In a similar manner we proceed to other interesting queries, as
illustrated below.

1.Variation of the initial concentration of PRPP does not change the steady state.

(PRPP = 10 * PRPP1) implies steady_state()

This query will be true when evaluated against the modified simulation run (i.e. the one
where the initial concentration of PRPP is 10 times the initial concentration in the first run –
PRPP1). Figure 8 illustrates how XSSYS treats such a query.
2.Persistent increase in the initial concentration of PRPP does cause unwanted changes in
the steady state values of some metabolites.
In this case, if the increase in the level of PRPP is in the order of 70% (see [4]) then the
system does reach a steady state, and we expect to see increases in the levels of IMP and
of the hypoxanthine pool in a “comparable” order of magnitude. This means that

Always (PRPP = 1.7*PRPP1) implies steady_state()

will be true over the modified experiment trace. Note the use of “always” in this TL query to
indicate the persistent increase of the PRPP value. For a contrast, consider the following
statement:

Eventually(Always (PRPP = 1.7 * PRPP1)
 implies
 steady_state()
 and Eventually(Always(IMP < 2 * IMP1))
 and Eventually(Always(hx_pool < 10*hx_pool1)))

where IMP1 and hx_pool1 are the values observed in the unmodified trace. The above
statement turns out to be false over the modified experiment trace. In fact, the increase in
IMP is about 6.5 fold while the hypoxanthine pool increase is about 60 fold. Figure 9
illustrates how XSSYS treats such a query.

Since the above queries turn out to be false over the modified trace, we conclude that the
model “over-predicts” the increases in some of its products and that it should therefore be
amended.

16

www.manaraa.com

4.2 Modes 3, 4, and “Final”
The following sequence of models (leading to the “final” one, which is adapted from [5,6])
improves their response as compared with known clinical data. Again, we consider a simple
example from [4] where we express the properties being tested with our TL language.
Temporary perturbations. We reused the model published in [4] and the data generated with
PLAS software with a variation. The PLAS model reaches the steady state, and the in silico
experiment shows that when an initial level of PRPP is increased by 50-fold, the steady state
concentration is quickly absorbed by the system. The level of PRPP returns rather quickly to
the expected steady state values. IMP concentration level also rises and HX level falls before
returning to predicted steady state values.

Figure 8. The first example discussed in the context of “Model 2”. The variable X1 is PRPP
and the fact that the initial condition is changed is expressed as stated.

These results are tested with the same TL expressions we described earlier. However, we
need to make a change to our model to make PRPP increase only after a certain time after the
simulation has started. This change allows us to reformulate our query as follows:

17

www.manaraa.com

 Always(PRPP > 50 * PRPP1
 implies
 (steady_state()
 and Eventually(IMP > IMP1)
 and Eventually(HX < HX1)
 and Eventually(Always(IMP = IMP1))
 and Eventually(Always(HX = HX1))

The above query may be interpreted as follows: an (instantaneous) increase in the level of
PRPP will not make the system stray from the predicted steady state, even if temporary
variations of IMP and HX are allowed. Figure 10 shows how XSSYS responds to the new
query.

Figure 9. In Model 2 of [4] the level of PRPP is persistently raised to 1.7 its undisturbed
steady state level. The XSSYS correctly answers the query whether the levels of IMP
(variable X2) and the HX pool (variable X8) are still within acceptable bounds. Notice that they
are not, thus, indicating a flaw in Model 2.

18

www.manaraa.com

Figure 10. The in silico trace of the “final model” from [4]. We arbitrarily increased the level of
PRPP (variable X1) to more than 250 at time step 100. The XSSYS system correctly answers
both queries. Because of numerical fluctuations we had to ask a less stringent question about
the steady state value of IMP (variable X2) and HX (variable X13).

5 Concluding Remarks:
We have released a preliminary version of our software to the DARPA’s Biospice community
(http://www.biospice.org). Several interesting questions remain to be further explored.
E.g. we are working toward integrating some Time/Frequency Analysis techniques into our
tools, in order to better discriminate different traces, and to incrementally construct a better
model without losing information (both numerically and symbolically). Just in order to get the
interested reader to appreciate the challenges posed by this new branch of computational
biology we list the following questions.
Reactions Models: We have primarily focused on a simple ODE model (Differential Algebraic
Equations, DAE) and narrowed this even further to a model based on S- and XS-systems.
Does this imply that we are accommodating a significant deviation from reality? How can a
stochastic model representing small number of molecules interacting pair-wise and randomly
be incorporated?
Numerical Issues: Many of the operations we propose need to be carefully analyzed from the
numerical analyst point of view, in order to take into account error propagation issues.

19

http://www.biospice.org/

www.manaraa.com

Hybrid Systems: Certain interactions are purely discrete and after each such interaction, the
system dynamics may change. Such a hybrid model implies that the underlying automaton
must be modified for each such mode. How do these enhancements modify the basic
symbolic model?
Spatial Models: The cellular interactions are highly specific to their spatial locations within the
cell. How can these be modeled with richer abstractions of automata, e.g., cellular-automata?
How can we account for dynamics due to changes to the cell volume? The time constants
associated with the diffusion may vary from location to location; how can that be modeled?
State Space: A number of interacting cells can be modeled by product automata. In addition to
the classical “state-explosion problem” we also need to pay attention to the variable structure
due to i) Cell division, ii) Apoptosis and iii) Differentiation.
Communication: How do we model the communication among the cells mediated by the
interactions between the extra-cellular factor and external receptor pairs?
Hierarchical Models: Finally, as we delve into more and more complex cellular processes, a
clear understanding can only be obtained through modularized hierarchical models. What are
the ideal hierarchical models? How do we model a population of cells with related statistics?

Acknowledgements:
We thank Mike Wigler, Misha Gromov, Ale Carbone, Tom Anantharaman, Vivek Mittal, Rob
Lucito, Jack Schwartz, Roger Brockett, Sanjoy Mitter, Shankar Sastry, Sri Kumar, Mita Desai,
David Harel, Amir Pnueli, Jane Hubbard, Charlie Cantor, Yuri Lazebnick and Harel Weinstein
for offering many exciting ideas, useful contributions and ways to think about genomes,
proteomes, pathways and cellular processes. Many of our close colleagues from NYU
Bioinformatics group, Cold Spring Harbor Laboratory and Mt. Sinai School of Medicine have
directly and indirectly contributed to this effort: Toto Paxia, Raoul Daruwala, Joey Zhou, Archi
Rudra, Naomi Silver, Frank Park, Chris Wiggins, Violet Chang, Elizabeth Thomas, Ken Chang
and Joe West. To all of them, we are grateful. The work reported in this paper was supported
by grants from NSF’s Qubic program, DARPA’s Biospice program, HHMI biomedical support
research grant, the US department of Energy, the US air force, National Institutes of Health and
New York State Office of Science, Technology & Academic Research.

20

www.manaraa.com

References
[1] U.S. Bhalla and R. Iyengar (1999). Emergent Properties of Networks of Biological

Signaling Pathways, Science 238, 381-387.
[2] M. Elowitz and S. Leibler (2000). A synthetic oscillatory network of transcriptional

regulators, Nature 403, 335-338.
[3] J. Keener, and J. Sneyd (1998). Mathematical Physiology, Springer-Verlag, New York.
[4] E. O. Voit (2000). Computational Analysis of Biochemical Systems, Cambridge.
[5] R. Curto, E. O. Voit, A. Sorribas and M. Cascante (1998). Mathematical models of

purine metabolism in man, Mathematical Biosciences 151, 1-49.
[6] R. Curto, E. O. Voit, A. Sorribas and M. Cascante (1998). Analysis of abnormalities in

purine metabolism leading to gout and to neurological dysfunctions in man,
Biochemical Journal 329, 477-487.

[7] E. O. Voit (editor) (1991), Canonical Nonlinear Modeling, Van Nostrand Reinhold.
[8] E. A. Emerson (1990). Temporal and modal logic, in J van Leeuwen, ed., Handbook of

theoretical computer science, Vol. B, chapter 16, pp. 997-1072. Elsevier, Amsterdam.
[9] C. C. Guet, M. B. Elowitz, W. Hsing and S. Leibler (2002). Combinatorial Synthesis of

Genetic Networks, Science 286, 1466-1470.
[10] B. Mishra and E.M. Clarke (1985). Hierarchical Verification of Asynchronous Circuits

Using Temporal Logic, Theoretical Computer Science 38, 269-291.
[11] M. Antoniotti, A. Policriti, N. Ugel and B. Mishra (2002). XS-systems: eXtented

S-systems and Algebraic Differential Automata for Modeling Cellular Behavior,
Proceedings of the International Conference of High Performance Computing, HiPC'02,
Bangalore, India.

[12] M. A. Savageau (1993), Finding Multiple Roots of Nonlinear Algebraic Equations Using
S-System Methodology, Appl. Math. And Comput. 55, 187-199.

21

	Introduction
	Experiments and Simulation
	Mathematical Models, Differential Equations and Canonical Fo
	Characterizing the behavior of the system across different “
	Temporal Logic (TL)

	A Simple Example: the Repressilator
	A More Complex Example: Purine Metabolism
	Model 2
	Modes 3, 4, and “Final”

	Concluding Remarks:
	Acknowledgements:
	References

